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Summary. The truncated expansion of the function |x| was frequently used to
express the total Hiickel n-electron energy (E) in terms of moments. We now
present an identity which connects E with an infinite series of moments. This
series is convergent. Lower and upper bounds for E are obtained, based on the
same infinite moment expansion.
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1. Introduction

The fact that the quantity £ in Eq. (1) for the total Hiickel n-electron energy:
Eo=no + Ef (D

satisfies the relation:

=3 Iy @
j=

was known already to the earliest researchers in this area [1-3]. In Eq. (2) x;
stands for the eigenvalue of the respective adjacency matrix [4, 5] and # is the
total number of n-centers in the respective conjugated molecule. The function |x|
means the absolute value of the variable x. Usually, the quantity E is considered
instead of E,, and is also named “total m-electron energy”; this is formally
achieved by expressing the energy levels in so-called f-units (¢ =0, f = 1). When
B-units are employed, then x; coincides with the energy of the j-th MO. Equation
(2) holds provided all the bonding MOs are doubly occupied and all the
antibonding MOs are empty and provided the trace of the underlying adjacency
matrix is zero [4]. As well known [5], this latter condition is obeyed only in the
zeroth order “same «, same 8 version of the Hiickel model and even then only
by aromatric and unsaturated hydrocarbons. In spite of all these limitations, the
quantity E continues to attract the attention of theoretical chemists and is
extensively studied in the chemical literature over almost half a century; for a
recent review of the work on Hiickel total m-electron energy and a critical
evaluation of the range of its chemical applicability see [6].
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The approximation of the function |x| in Eq. (2) by means of a truncated
power series:

L
|x|= Y ayx* 3
k=0

has been proposed and/or utilized by a large number of researchers [7-16].
Equation (3) immediately leads to a moment-expansion of E, namely:

L X
Ex z Ay Moy 4
k=0

Here and later M, denotes the r-th spectral moment defined as
Mr = Z (xj)r.
k=1

The importance of Eq. (4) lies in the fact that we know how the first few
moments depend on molecular structure (see [17-20] and the references cited
therein). Therefore by means of Eq. (4) we gain a considerable insight into the
structural factors which influence the value of the quantity E in Eq. (1) and thus
may somewhat better understand the structure-dependence of total 7-electron
energy of conjugated n-electron systems. The disadvantage of Eq. (4) is that the
coefficients a,, on its right-hand side strongly depend on the truncation parame-
ter L. In particular, for L — oo:

lim gy =0 (5a)
lim[( —1)*~'ay] =00, k>0. (5b)

The expansion (3) is certainly divergent in the point-wise sense, but it always can
be chosen to be convergent in the L? sense (for respective details see e.g. [21]).
Consequently, the truncation of the right-hand side of Eq. (4) need not result in
serious numerical errors in E. The real problem, however, lies in the fact that in
structure-dependence studies E has to be partitioned into contributions which are
interpreted as the effects of particular structural features of the molecule exam-
ined. When Eq. (4) is used for this purpose, then the calculated energy-effects are
functions of the coefficients a,, and are thus significantly influenced by the actual
value of the truncation parameter L. In a recently studied example the results of
such an energy-partitioning were shown to be chemically unreliable [12, 15]. The
limits (5) are, of course, equivalent to the well-known nonexistence (i.e. diver-
gence) of an infinite power-series expansion of the function |x|. Some authors
tried to overcome this difficulty by expanding |x| in powers of x — xg, x, #0
[3,18, 22], but then E is not at all expressed in terms of spectral moments. Only
if the latter expansion is truncated, the resulting approximate formula for E can
be transformed into the form of Eq. (4). Then, however, the above mentioned
problems with the L-dependence of the coefficients a,;, and the infiniteness of
their limit values cannot be avoided.

In this paper we approach the moment expansion of total n-electron energy
from a different direction and obtain a mathematically exact and point-wise
convergent power-series formula.

2. An auxiliary result

As already mentioned, x,, x,, ..., x, denote the eigenvalues of the adjacency
matrix (and are, consequently, closely related to the HMO energy levels). Then
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the polynomial P(x), determined via Eq. (6):
P(x) =[] (x —x,) (6)

j=1
is the secular (or characteristic) polynomial of the respective m-electron system
[4].
In what follows we demonstrate a property of any polynomial P(x) whose
ZEros are Xy, X, . . . Xp.
Let P'(x) = (d/dx)P(x). Then from Eq. (6):

P/ = (x — xa)(x — x2)(x — %) - (¥ — x,)
(= )0 — X —xg) - (= x,)
(= )06 — ) —xg) - (6 — %)
4 (=X )X = X)) (X —x3) (X — X, )
= 3 PO —x)

i=1
1e.:

PPE) =Y (x—x) %

j=1

The identity (7) readily yields:

1 _,/1 1y 1
;ﬁP <?>/})<;>A—j2;(l'—lx» . (8)

The term (1 —#x;) =" on the right-hand side of Eq. (8) is just the sum of a
geometric progression, i.e.:

(1—1x;)" "= 3 (1x;)"
r=20
provided:
|ex;| < 1. 9
Consequently, if the condition (9) holds for all j=1,2,...,n, then:

n

Y (1—x) ' = i i (tx;) = iOM,z’

j=1 j=1r=0

and, bearing in mind Eq. (8):
1 1 1 sl
- P (—)/P <—> =Y M. (10)
t o\t t] =

3. The main result

In 1940 Coulson [1] showed that the total Hiickel n-electron energy, satisfying
Eq. (2), conforms to the remarkable integral formula:

E=%j+wF(x)dx (11)

— 0
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where
F(x) =n — ixP’(ix)/P(ix). (12)

In Eq. (12) P(x) is the secular polynomial and i=./—1. (For details on
Coulson integral formulas for E see [23], pp. 139-143.)

Substituting ix = 1/t and using the identity (10) we transform the integrand
(12) into:

) =n— i M,(—ifx)". (13)

Taking into account that My =n, Eq. (13) is further simplified as:

F@) == £ M (=i = (=) My

r=1

+1i Z (=D* "My, x~3—D, (14
=1

This latter formula holds for all values of the variable x, such that |x|> |x;
j=12,...,n

Let 4 be a positive number, such that 4 > |xj|, j=1,2,...,n Let
D=(—00, —4]u[4, +00). Then Eq. (14) is applicable for all xeD.
Combining Eqgs. (11), (12) and (14) we attain at:

)

1 © 1 w
EZ—J Z (_l)k_le"xdkdx*’_J‘ Z (—D* "My x~ - Dgx
T Jpk=1 T |p 2
1 [+4
+—J F(x) dx. (15)
T4

The second integral on the right-hand side of Eq. (15) is equal to zero because
the respective integrand is an odd function of x. Recalling further that:

f x Hdy =22k —1)"14-G-D
D

we readily arrive at our final result.

Theorem 1
Let A4 be any positive real number which exceeds all the eigenvalues
Xy, X3, - .., X,. Then the total Hiickel n-electron energy FE satisfies the identity:
2 = .
E=E Y (=D 2k —1)"'4" =DM, + K, (16)

k=1 '
where
2 A
E,= - J [n — ixP’(ix)/ P(ix)] dx. (17
0 .

This identity holds if and only if the condition (2) is obeyed.
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4. Moment-expansion-based bounds for total n-electron energy

The integrand in Eq. (17) is a positive-valued bell-shaped function with maxi-
mum at x =0 [24]. Because F(0) = n, for all real values of x the function F(x)
is bounded as follows:

0< F(x) €n.
Applying these relations to Eq. (17) one immediately concludes that:
0< Ey<(2/m)An = (2/n)AM,. (18)

The inequalities (18) together with Eq. (16) result in the following lower and
upper bounds for total w-electron energy.

Theorem 2

Let 4 be any positive real number which exceeds all eigenvalues x,, x5, . . ., X,.
Then the total Hiickel n-electron energy E is bounded from both below and
above by the same 1nﬁn1te series of moments:

< Z (—D)F 2%k —1)"14-@F-Dy, <E

nk—l
<Ekz (—l)k_l(Zk — 1)‘1A _(Zk‘l)Mzk. (19)
-0

The estimates (19) are not very narrow and much better lower and upper bounds
for E are known (see, for instance, [25]). We pointed out the relations (19)
because of their appealing form and because they may contribute towards a
better understanding of the moment-expansion techniques.

5. Concluding remarks

Equation (16) represents a kind of moment expansion of the total m-electron
energy. It, however, reveals that only one part of E, namely £ — E;, can be
expanded into a point-wise convergent infinite series of moments. This part
of E depends solely on even moments. Furthermore, the moments
My, M, My, ..., M, ,,,... have positive (stabilizing) contributions to E
whereas the moments M,, Mg, M\,, ..., M,,, ... have negative (destabilizing)
effects. This latter regularity precisely parallels the previously formulated “loop
rule” [9].

The other, “irreducible” part of total m-electron energy, which cannot be
expanded in terms of moments, is given by Eq. (17). Because the parameter A in
Eq. (17) is necessarily greater than the maximal MO energy level, the quantity E,
is numerically quite significant and is by no means negligible, as compared to
E — E,. The existence of such an “irreducible” component was systematically
overlooked in the previous moment-expansion studies of the total m-electron
energy. This should be considered as a major pitfall in the efforts to express E
(solely) in terms of spectral moments.

The quantity E, evidently deserves a particular attention. The bounds (18)
for E, are very weak indeed and certainly need to be improved. Using a
previously elaborated method [24] we can approximate the integrand F(x), Eq.
(12), by means of a simple algebraic function:

F(x) ~ MyM, (M, + Myx?) !
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which by applying Eq. (17) yields:
2
E,~ o (Mo M,)'? arctg[A(M, /M) 7).

We note in passing that in the case of uncharged conjugated hydrocarbon
molecules, M, and 1M, are equal to the numbers of carbon atoms and carbon-
carbon bonds, respectively [4].

Theorem 1, being a mathematically exact result, in an implicit manner
indicates that the strategy of approximating the total n-electron energy only by
means of linear combinations of certain spectral moments is not a good one. A
nonnegligible part of E behaves in a way which cannot be adequately described
by moment-based expressions. Therefore the method of moment expansion
(although used over a very long period of time and by numerous researchers
[3, 4, 7-16, 18, 22]) should be critically revisited and augmented by an appropri-
ate analysis of the “irreducible” term E,.
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